Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film
نویسندگان
چکیده
The control of complex oxide heterostructures at atomic level generates a rich spectrum of exotic properties and unexpected states at the interface between two separately prepared materials. The frustration of magnetization and conductivity of manganite perovskite at surface/interface which is inimical to their device applications, could also flourish in tailored functionalities in return. Here we prove that the exchange bias (EB) effect can unexpectedly emerge in a (La,Sr)MnO3 (LSMO) "single" film when large compressive stress imposed through a lattice mismatched substrate. The intrinsic EB behavior is directly demonstrated to be originating from the exchange coupling between ferromagnetic LSMO and an unprecedented LaSrMnO4-based spin glass, formed under a large interfacial strain and subsequent self-assembly. The present results not only provide a strategy for producing a new class of delicately functional interface by strain engineering, but also shed promising light on fabricating the EB part of spintronic devices in a single step.
منابع مشابه
Thin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate
In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...
متن کاملIncreased Curie Temperature Induced by Orbital Ordering in La0.67Sr0.33MnO3/BaTiO3 Superlattices
Recent theoretical studies indicated that the Curie temperature of perovskite manganite thin films can be increased by more than an order of magnitude by applying appropriate interfacial strain to control orbital ordering. In this work, we demonstrate that the regular intercalation of BaTiO3 layers between La0.67Sr0.33MnO3 layers effectively enhances ferromagnetic order and increases the Curie ...
متن کاملPreparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin
Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide), and ...
متن کاملStrain Engineering of Octahedral Rotations and Physical Properties of SrRuO3 Films
Strain engineering is an effective way to modify functional properties of thin films. Recently, the importance of octahedral rotations in pervoskite films has been recognized in discovering and designing new functional phases. Octahedral behavior of SrRuO3 film as a popular electrode in heterostructured devices is of particular interest for its probable interfacial coupling of octahedra with th...
متن کاملRecent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.
Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar sem...
متن کامل